A Novel Approach for 3D Head Segmentation and
Facial Feature Points Extraction

Achraf Othman and Oussama El Ghoul, Research Lab. LaTICE, University of Tunis, Tunisia

Abstract—This work presents a novel approach for 3D head
segmentation as well as for extraction of facial features vertices.
These tasks are the preliminary task for retrieval, recogni-
tion, classification and tracking processes. 3D head regions are
detected from a cloud of points using the ratio of geodesic
to Euclidean distances between pairs of vertices that combine
neighbor coordinates and position information of the point. In
this paper, we propose a new algorithm to extract automatically
feature points inside the facial region based on the topology of 3D
face. Furthermore, in order to validate our approach, we have
run experimentations on several types of full 3D head that differ
in number of points and surfaces, gender and ethnic. Also, to
approve its robustness, we apply our approach on a benchmark
of scanned faces containing 67 models.

Index Terms—Image processing, Computer vision, Segmenta-
tion, Edge and feature detection.

I. INTRODUCTION

N recent years, a concurrent interest in facial animation

has been increased. In fact, thanks to the technological
growth in hardware development, especially that of graphics
card, it becomes possible to synthesize facial expressions in
short time. Indeed, if it is easy to make a virtual character
credible in the eyes of the user, the task is more difficult in
respect of an avatar, as the human eye, trained to see real
human, can detect directly the smallest level defects of facial
animation. Several works have been achieved with the aim
to simulate or clone the transformations of facial animation.
Each system developed its own characteristics and its own
techniques of animation. But all these techniques were based
essentially on the topology of the mesh which constituted
the human head. Insufficient resources and computing speed
were the main constraints. In addition to the problems of
processing, the deformations, applied on a model, were usually
modelled manually which required skilled human resources.
The reusability of key or meta-model was important and in-
teresting, contrary to a system based on interpolation like Free-
Form Deformation (FFD) [1]. Several systems with parameters
had emerged whose main were FACS [2] and MPEG-4 Facial
Animation Standard [3]. The choice of a system returns to
choose the key points allocated on the 3D model. Each system
had its own feature points which were applied on different
faces or heads. Nowadays, FACS system is employed in the
field of the analysis of facial expressions whereas MPEG-4
Standard is oriented for applications in networks. Despite the
advantage of parametric systems, we note that the selection
of feature points is still manual and until now there are
no approaches for full automatic extraction of these points
from 3D head. Our work is located in the first phase of the

animation facial which consists to design a system able to
extract automatically feature points from a 3D mesh based on
the ratio of geodesic and Euclidean distances. This goal must
be pass by a beforehand task called 3D head segmentation. A
point concerning the design of virtual models and their mesh
topologies will not be discussed here. In our implementations,
we apply directly on the mesh generated automatically by free
open source tools or 3D scanned face from benchmark [4].
The benchmark GavabDB contains 427 of 3D facial surface
images corresponding to 61 individuals (45 male and 16
female), and there are 7 different images per each person.
The whole set of individuals are Caucasian and most of
them are aged between 18 to 40 years old. Each element is
given by a mesh of connected 3D points of the facial surface
without texture. The database provides systematic variations
with respect to the pose and the facial expression. The paper
is organized as follows. Section 2 is a review of previous
works of facial feature vertices extraction from 3D head. A
survey of segmentation techniques is presented in Section 3.
In Section 4, we describe the 3D face geometry. Section 5
presents the data used for experiments. The approach and the
different steps of treatment are presented in Section 6. Final
conclusion is drawn in Section 7.

II. THE FACE GEOMETRY

A graphical representation of a face in the 3D world is
required to render a virtual head. The head can be a 3D mesh
which is a list of vertices (or nodes or points) and a list of
surfaces (or closed polygons chain) connecting the vertices.
The mesh is commonly used to represent the shape. The
relative position of the face feature vertices, described in the
previous section, differs from person to person. The geometry
of the face model is usually defined by an artist-designed
face wire-frame [5]. Laser scanners can acquire a precise
3D realistic face shape with texture. The problem with this
modelling technique is that the obtained face model topology
is arbitrary and does not fit the typical motion characteristics
of human faces. Furthermore, these models are too dense to
be animated [6]. Different research groups dealing with face
animation and coding have therefore designed their own 3D
mesh faces that can handle the anatomical face deformations.
The face mesh model is composed of a finite set of vertices
{V} ={W,Va,...,V,} € R3 The model is located around
the 3D proprietary axes (x, y and z) such that the origin lies
inside the face volume. The finite set of vertices composes a
finite set of surfaces {S} = {51, S2,...,S5,} € R? for trian-
gulated surfaces.

III. MESH SEGMENTATION TECHNIQUES

Segmentation of 3D surface meshes has become an impor-
tant step for many fundamental problems in computer graphics
like Digital Shape Reconstruction or Recognition. It can be
used not only to provide semantic information but also for the
exploitation of high level semantics from 3D Data. Usually,
a 3D output is acquiring by different 3D editor tools. The
generated output is a set of 3D points which present the
topology of the object. Generally, the topological structure is
a triangulated, and it is ready for any processing. Many 3D
mesh segmentation algorithms, methods, and techniques have
been developed according to a specific problem over the last
several years. These different methodologies can be classified
into the following categories [7], [8]:

o Region growing: is a simple region-based mesh seg-
mentation. In this technique, the segmentation exam-
ines neighbors vertices of initial vertices and determines
whether the vertex should be added to the region. The
process is iterated on using general data clustering algo-
rithm. The disadvantage of this technique is consuming
and noise or variation of intensity may result holes and
over-segmentation.

o Watershed-based: regions are segmented into water fills.
The watershed algorithm derives its name from the
manner in which regions are segmented into catchment
basins. Different approaches can be employed to use
the watershed principle: local minima of the gradient or
marker position defined by the programmer or determined
automatically with morphological operators.

e Markov Random Fields [9]: authors used Markov Ran-
dom Fields to acquire the segmentation of a range view
scan.

e Reeb graphs: it is a topological approach for 3D indexing
that preserves mesh proprieties. It is composed by a set
of vertex that represents critical points called minima
or maxima depending to their position. It defines the
connectivity of its level sets.

o Model-based: starting from a repetitive 3D Model or
shape, this technique can seek for a probabilistic model
towards explaining the variation of the shape. This task
involves registration of the training examples to a com-
mon pose or samples.

o Skeleton-based: this technique is adapted for 3D Mesh
animation. The segmentation areas of the object are not
based on the geometry of the shape but also on anatomical
information. It can be readily used to produce shape
segmentations which are natural, robust, and have a multi-
scale property.

e Clustering or k-means algorithm is an approach that
composes the mesh on k partitions or clusters in which
each cluster belongs to the score with the nearest average.
It aims to partition n observations into k clusters in which
each observation belongs to the cluster with the nearest
mean. The problem is computationally difficult and NP-
hard in execution time.

e Critical points-based: this method uses defined critical
points in the mesh. These points are salient feature and

used to aid the segmentation process. The approach is
based on three key ideas: the transformation of the mesh
vertices into a pose invariant representation, the robust
extraction of prominent feature points, and the extraction
of the core component of the mesh.

¢ Multi-scale Shape Descriptors: based on shape analysis
and mesh classification, this method converts vertices to
a signal and applies some signal processing techniques
toward 3D reconstruction or volume visualization.

o Direct segmentation: is a technique that segments the
mesh into smaller regions belonging on sharp or different
sort of edges. Generally, this approach is based on hier-
archical mesh decomposition. Each node in the hierarchy
tree is associated with a mesh of a particular patch and
the root is associated with the whole input object.

Many techniques were described in this section, We are
interested, in particular, in methods based on digital geometry
due to the face or full head topology. Mesh segmentation is
an important step to our work and constitutes its first step.
It can divide 3D faces into meaningful areas such nose, ears
and front of the face. In some case, it is not possible to detect
only the required clusters due to the noise or others factors
(especially in scanned faces); we therefore involve some
algorithms or techniques for labelling. After clustering, feature
points extraction serves to facial animation. Next section will
be an overview of different existing systems.

IV. FEATURE POINTS EXTRACTION

Extracting feature points from 3D objects is a typical prob-
lem that attracts many researchers. Before, researchers focused
on 2D face. They integrated edge detection operator and others
techniques. Nowadays, many researches are interested in 3D
faces. Features are considered as important parts of 3D objects.
Feature extraction from 3D objects is a beforehand task for
analysis, segmentation, animation, compression, classification,
retrieval, recognition and tracking. Several works have been
developed aiming to resolve these problems. Below, we quote
some algorithms designed to detect automatically the most
prominent facial features from 2D faces [10]:

o D’orazio et al. [11] proposed a fast eye detector algorithm
that uses iris geometrical information for determining, in
the whole image, the region candidate to contain an eye,
and then the symmetry for selecting the couple of eyes.
This work was limited on extracting eye position on 2D
images. And, there is no extension to determine others
parts of the face. Through different experimentations, the
results showed that the algorithm is robust.

e In order to track faces and features points: nose, eye
and mouth [12], the authors proposed two automatic
algorithms which respectively perform the detection of
head outlines and identify nose-eye-mouth regions. Ex-
perimentation was applied only on 3 faces. The head lo-
cation algorithm performed robustly in normal situation.
The tracking of feature point was performed robustly,
however, no experimental results were given.

e Yilmaz et al. [13] proposed a new approach for detecting
facial features for images and video streams. They assign

a confidence number to combinations of feature candi-
dates given the edge map of the face. Feature candidates
are determined using probability distribution of color
space of skin, eyes and eyebrows. Authors conducted ex-
periments on both still images and eleven video sequences
including two CNN interviews. This work has not been
applied on 3D faces and no experimental results were
given.

o Laietal. [14] tried to extract facial feature points from 2D
images under different lighting condition. The main dif-
ficulties were high detection accuracy, low computational
time and nonlinear lamination. To solve these problems,
the authors proposed to use the skin color, lip color and
also the face boundary information. For experiments, they
used 743 images from the Omron database. The detection
accuracy was around 86%.

o According to [15], their work addressed a method for ex-
tracting human facial features from the head-and-shoulder
images used in videophone communications and included
motion information in their feature detection scheme.
The algorithm, called spatial eye-mouth finder (EMF), is
based on temporal and spatial domains. Only 2D images
were tested and results were satisfactory.

e Lam et al. [16] approachs could detect 15 feature points
at different perspective variation. Rotation of the face
could be estimated using geometrical measurements. Ex-
perimental results showed that overall recognition rates
were over 84%.

For 3D mesh, algorithms are based on the observation that
feature points can be characterized by local as well as global
conditions, in terms of their distances (geodesic, Euclidean or
others).

e Xu et al. [17] proposed a method to solve a specific
problem: locating the nose tip by one hierarchical filtering
scheme combining local features. The algorithm extracts
local surface features and local statistical features of each
point. The method is based on computing the Effective
Energy for each point. Then, the Included Angle Curve is
defined to estimate the nose ridge. This work was limited
on locating only the nose tip position. No detailed results
were given.

« Shalini et al. [18] proposed 3D face recognition algorithm
based on PCA. For this algorithm, a subsection of each
face range image of size 354 pixels, enclosing the main
facial features was employed. The recognition algorithm
employed geodesic and Euclidean distance between two
faces. The data set contained 1128 head models of 105
subjects.

« Dalong et al. [19] introduced a new algorithm of calculat-
ing the displacements of face animation vertices. It was
based on Facial Animation Parameters (FAP). According
to the authors, Facial Definition Parameter (FDP) was
identified manually by a programmer. Experimental re-
sults were applied on a limited number of 3D scanned
faces.

In the literature, there exist others works and algorithms.
We focus only on several approaches related to our work.

In fact, existing works, through various algorithms, lead us
to use geometry rules like Euclidean and geodesic distance.
Furthermore, there are no approaches to extract feature points
from 3D head. From the results of 2D faces, and thanks
to the segmentation of the 3D mesh, we introduce a novel
approach for extracting feature vertices from 3D head. Mesh
segmentation techniques will be discussed in the next section
towards introducing the new approach of segmentation of 3D
faces/head.

V. CONTRIBUTION AND STRUCTURE
A. Problematic

The extraction of data from 3D mesh (matrix of vertices
and surfaces) has quickly emerged as a preliminary step for
post-processing. These extracted data are abstract and they
indicate neither the rotation (orientation) nor the scale of face.
Generally, the face has a common topology at the level of
the ears, eyes and the nose. Thes areas are more detailed
at the level of mesh size. In other words, these areas are
dense in number of points and surfaces. These areas have
an important number of vertices. So, we talk about density
distribution of the mesh. The distances between vertices in
these areas are minimal. Since we can consider the mesh
as a graph related, where vertices are the summits and the
Euclidean distance between a pair of vertices is the arc. The
distance between two vertices, which are not direct neighbors,
is the minimal distance passing through their neighbors. This
distance is called Geodesic distance. This treatment can lead
us to determine a mark of the face such as:

o The 2 vertices of ears are the X Cartesian axis.

o The middle of the two vertices of ears and the nose tip

is the second Cartesian axis (Z axe).

e The perpendicular to precedent two axes is the third

Cartesian axis (Y axe).

B. Ascertainement

Aiming to determine automatically feature vertices from the
mesh of the face, we studied and analyzed its topology. In a
first step, we noticed that the distribution of vertices is not fair.
The density of vertices should be distributed according to the
surface curvature. Some face parts like nose, lips, eyes or ears
comprises the largest density of vertices because it needs more
geodesic details. The first solution we proposed, concerning
the extraction of significant face parts, is to compute areas
containing the largest number of vertices. Applying one of
the clustering algorithms to determine these areas should be an
interesting way. However, this technique shows a malfunction
to the faces scanned or some processed faces, due to the
regular distribution of the vertices densities in all the face
curvature. The second ascertainment that we noticed is about
the curvature of the mesh. In fact, the face has a particular
geodesic surface in which the curve is more intense in the
neighborhood of the eyes, less intense in the neighborhood of
the nose and variable in the ears surfaces. The intensity of the
curvature is defined as the bending of the curve or as the rate of
the directions change of its tangent vector. This characteristic
encourages the use of a Watershed-based approach. The third

ascertainment is based on an anatomical aspect; it confirms
that the human face is symmetric. The symmetry does not
allow to do the segmentation or to compute feature points;
however it can be very helpful to refine the obtained results.
Finally, we remark that there exists a very interesting property
of the mesh that we can exploit to determine significant parts
of the face. Indeed, the rate of the geodesic distance between
two vertices divided by its Euclidian distance increase in the
ears, the nose, the lips and the eyes surfaces (See figure 1).
Based on these characteristics, we have built our approach,
which is described in the next section.

Fig. 1.

Parts of the face in which the geodesic distances are larger than the
Euclidian distances (Yellow lines).

C. Our approach

The approach that we propose is mainly based on the
last property cited in the previous paragraph. We propose
to compute the vertices that are close by Euclidean distance
and far away by geodesic distance. After determining the
significant zones of the mesh we propose to apply some
geometric properties like the symmetry to compute feature
vertices. The input of the system is a mesh stored in two
matrixes one contains the vertices list and second describes
faces. The output is a vector containing the index of feature
vertices. Previously, we described the problem of rotation
and scale. To resolve this problem, we try to compute the
high density distribution in the 3D head. The high density
distribution contains vertices that are too close. To compute
these distributions, we propose:

o Computing matrix of neighbors for each vertices.

o Computing matrix of Euclidean distances for each pair
of vertices.

o Computing matrix of geodesic distances for each pair of
vertices.

« Extracting key point for the local three Cartesian axes in
the mesh.

« Extracting feature vertices using geometric metrics.

To validate our approach, we conducted experimentations on
GavabDB benchmark and full 3D head. For each model, we
created 3 files: matrix of vertices, matrix of surfaces and
configuration file. The configuration file contains the number
of iterations for segmentation step and the number of vertices
that will be extracted. For all models, we set the value
of iteration to two. The number of extracted points is the
total number of vertices divided by four. The output sandbox
contains as a result 3 principals files: z_clusters.app, z_fp.app
and z_repere.app which:
o z_clusters.app: includes head clusters vertices. The num-
ber of extracted vertices is equal to the value stored in
the configuration file.

« z_fp.app: encloses three dimensional coordinate of facial
feature vertices.

e z_repere.app: contains 4 vertices of the new local three
Cartesian axes.

D. Neighbours’ Matrix

The matrix of neighbors is computed from matrixes of
vertices and surfaces. It will be used for computing the shortest
path between all pairs of vertices. We note that two vertices
are neighbors if they are included in two surfaces at the same
time. The value in a cell (¢, 7) in the matrix is 1 if the vertex 4
and the vertex j are neighbors, and 0 else. The matrix will be
noted M,,.;4. The algorithm for computing M;,c;4 is shown in
the next figure. The complexity of the algorithm is O(n? xm?)
which n is the number of vertices and m is the number of
surfaces. In the beginning, all cells of the matrix contain the
value 0. Then, we iterate n times, which n is the number of
vertices. For each iteration of n, we iterate m times, which m
is the number of surfaces. If we have two vertices in the same
surface m, we store in the cell the value 1 else 0. Table I show
the average execution time of Neighbor-Matrix in sequential
mode and in parallel version of the algorithm. We made use
the parallel version (in MPI) because the execution time in
sequential version was very important. Thanks to EumedGrid
Infrastructure [20] that allows us to reduce the execution time
and run the algorithm in the others models in short time.
For the parallel version, we used 4 nodes. For execution, we
wrote a job description file that includes two matrices and the
configuration file. We apply the same technique to rest of the
algorithms: Computing the Euclidean and geodesic distance.

TABLE 1
DETAILS OF EXECUTION TIME OF NEIGHBOURS-MATRIX PROCESSING
(SEQUENTIAL AND PARALLEL (//) VERSIONS)

Neighbours algorithm Geodesic algorithm

Vertices Surfaces Seq.time //time Seq.time ~ //.time
550 1022 63.156 0.990 2.365 0.420
725 1363 96.486 1.032 8.965 1.449
794 760 102.368 2.069 6.352 1.288
900 1704 269.385 4.271 13.659 2.650
1073 2045 389.890 5.185 15.797 3.271
1760 1727 632.154 13.133 163.802 21.235
2179 2148 3760.578 126.365 204.890 23.598
2228 4368 5866.765 192.483 282.485 23.658
4929 9495 86724.047 2538.980 3070.906 56.645
6292 6152 70484.922 2045.362 642.968 31.456

E. Euclidean distance matrix

In digital geometry, with a three Cartesian axis, the
Euclidean distance noted dist between two vertices
Vi and V; is computed as follow: dist(V;,V;) =
\/(Pj = Pip)? + (Pjy — Piy)* + (P — Pi2)*. The
Euclidean distance matrix noted M., is computed between
two vertices V; and V;. We iterate n times to browse all pairs
of vertices. And for each vertex, we compute this Euclidean
distance (dist function in the algorithm).

FE. Geodesic distance matrix

The geodesic distance between two vertices is the shortest
path from the source vertex to the target vertex through the
neighbors. To compute the entire shortest path between all
pair of vertices, we employ the algorithm Floyd-Warshall [21]
which run in O(n?®), which n is the total number of vertex
in the mesh. In this step, we consider the mesh as a graph
G = (V,S). The weight between two vertices is the Euclidean
distance. The Floyd-Warshall algorithm is designed to solve
all pairs shortest paths problems for graphs with negative cost
edges. In our case, the cost edges are always positives due to
the value of Euclidean distance. In other words, the algorithm
maintains a matrix d;; € Myjoyq such that at iteration k ;
d;; is the shortest path from 4 to j using nodes 1,2,...,k as
intermediate nodes. After the algorithm terminates, assuming
that no negative cost cycle is present, the shortest path from
nodes ¢ to j is d;;. The main operation in the algorithm
is: dir, = min(dg; dij + dji). After k iterations, d;; is the
shortest path distance from ¢ to j involving a subset of nodes
in 1,2,...,k as intermediate nodes. For geodesic distance-
Matrix, we apply the same procedure of Neighbor-Matrix.
Table I shows details of execution time of Neighbor-Matrix
(sequential and parallel version). Results in parallel version
are encouraging. Also, the execution time depends on the
number of points and the number of surfaces at the same time.
For example, the execution time for the model having 4929
vertices is greater that the model having 6292 vertices as in the
first model, the number of surfaces is more important than the
second model. It is a compromise between vertices, surfaces
and execution time. After computing neighbors, Euclidean
distance and geodesic distance matrices, we try to locate the
face, to determine the head pose and the scale. This step
requires segmentation task. Segmentation algorithm is based
on the ratio of Euclidean distance and geodesic distance.
We iterate k times to extract vertices that compose clusters.
Figure 2 shows the experimental result in a scanned face from
GravabDB benchmark. In figure 2, we remark that the edge is
extracted as a cluster. This is due to the short distance between
vertices in the edge of the face and to topology of the face. Our
main goal is to extract feature points to animate a 3D head. So,
we are interested only in full 3D head. We run our algorithms
in scanned face just to approve robustness for noisy mesh in
some cases. As a perspective, we may work to improve our
technique.

G. Key vertices extraction

Key vertices play an important role in head pose orientation.
Key vertices noted P; are the vertices that compose the local
three Cartesian axes in the mesh. These vertices are: P;: The
left ear ; P»: The right ear ; P5: Themidpoint between Pland
P, and Py: The nose tip. The four vertices will be extracted
from the high density distribution in the mesh. In 3D head, the
high density distributions are the areas of ears, eyes and frontal
face (mouth and nose). Some properties for this distribution
that two vertices are too close based on Euclidean distance and
too far based on geodesic distance. So, if the ratio on Euclidean
distance and geodesic distance for a set of vertices is near zero.

For all pair of vertices we compute the ratio and we cluster the
different distribution collected from the matrix of ratio. The
results (figure 2) show that the high density distributions are
located in the ears and frontal face (composed by eyes, nose
and mouth). Now, after extracting three density distributions
from 3D head, we can extract Py (x1,y1, 21) and P (2, y2, 22)
from the two clusters that are too far and equidistant to the
rest clusters. The vertex Py(x4,y4, 24) is the equidistant vertex
from P; and P,. So we have: dist(Py, Py) = dist(Py, Py).
In some case, if we have not a symmetric mesh, we cannot
find the coordinates of P,. We change the formula of P, as:
dist(Py, Py) = dist(Ps, Py) + ¢/ € R. Experimental results
on several scanned face and 3D head are the same for each
model. Our algorithms are invariant to the pose, orientation,
scale and translation. And this is approved mathematically
by the ratio of the geodesic and Euclidean distance. Starting
from this local 3D Cartesian axis, we compute head pose,
scale and translation vector. After that, we apply the required
transformations to align the head in the center according to
Standard MPEG-4.

Fig. 2.
present the high density area in the face. Due to the noisy of the scanned mesh,
boundaries of the face were considered also as a cluster (Vertices count=6292;
Surface count=6152)

Extracted cluster in red applied to 3D scanned face. Yellow circles

H. Feature vertices extraction

Extracting facial feature points such as eyes, mouth and
nose plays an important role in many applications such facial
animation, and this is our main goal. The proposed methods
are based on the geometrical metrics of 3D mesh. At the
beginning, we may extract the first feature point that allows us
to compute the rest. The algorithm is based on the observation
that feature points can be characterized by local as well as
global conditions, in terms of their Euclidean and geodesic
distances. We can extract now the nose tip. This vertex will
be noted Py 3 same notation of MPEG-4 SNHC as follow:

1) Building a plane P passing from Ps. The vector of P
is noted Pl_Pg.

2) Projection of all the vertices near to P where
dist(P,P;) < e. ¢ is a small value aiming to reduce
the error rate of computing.

3) Draw a line A through the too far points in P.

4) Compute the Euclidean distance from projected points
to A plane.

5) The point Py 3 is the far point to A and the nearest
vertex to Py.

The plane P is computed from Pji(x1,y1,21)

and Po(x2,y2,22) and a normal through a point
I(x;,vi,2;). The normal vector n is defined as follow:

Ty = T2 — T
Yn = Y2 — 1
Zn = 22 — 21
P in Three dimension Cartesian Axis is (where a, b, ¢ and
d are constants): P(x,y,z) = ax + by + cz + d. We have:
P(z,y,2) = 2Ty +YYn + 225 — (LT + YiYn + 2i2n). Which:
a=2xp b=1yn c=2z, and d = —(x;xp + YiyYn + zizn)-
After, we find all vertices A(xq/,Ya, 2o) neighbors in P, we
have:

ii=PP = . The equation of the plane

dist(A, P) = 020 + bya + c20 + 4| (1)
Va2 + b2 + 2

The projected point for A noted A’ is determined as fellow:
Be A(z4,%a,2,) and his project A'(x4/,Yar, 2o’), We have
Pl_PQHA_AI , there exists a scalar k such as AA’ = k.P, P,.
We have A’ € P means that aaj, + bby, + cc, +d = 0. The
point Py 3 checks the following properties:

o The distant point to the line A.

o The nearest point to Pj.

To find the rest of vertices, we use the algorithm peaks and
troughs to locate the local extremumminima and maxima; in
3D mesh. Extrema are the largest value (maxima) or smallest
value (minima), that a function takes in a point either within
a given neighborhood. We apply the algorithm in 3D head
from a plane P in the middle of the head (through the nose
tip), the mid-plane between P and the left ear and the mid-
plane between P and the right ear. The results are the feature
vertices from 3D Head. Figure 3 shows the different steps
from a source 3D head passing from the step of clustering,
extracting the three local Cartesian axes and the final feature
vertices. Experimental results were run on 13 full 3D head.
The obtained results are very promising and that allow us to
develop a full facial animation process in the future.

Fig. 3.
Cartesian axis; pink points are extracted vertices

Red areas present the extracted cluster; yellow points are the local

VI. DISCUSSION AND CONCLUSION

In this paper, a novel and practical facial feature vertices
system has been described, which combines several algorithms
of feature detection with robustness to different mesh (gen-
der, ethnic, scale, translation, pose head, number of vertices,
number of surfaces). The proposed technique is based on 3D
face/head segmentation computed from the ratio of Euclidean
and geodesic distance. The procedure is fully automatic, while
user modification is also allowed if necessary. The results can
be used in a system for automatic facial animation. Experiment
results testified the feasibility and validity of our method
based on introducing geometrical metrics. There are several
interesting directions in which our work can be extended,
that address the main limitation of our work: reducing the
execution time and robustness to the noisy model. The hidden

goal of facial feature extraction is imitating human visual
perception. Since this methods can neither be formalized nor
measured mathematically. An empirical basis for research
should be provided.

ACKNOWLEDGMENT

Special thanks to Dr. Heithem Abbes for his fruitful remarks
and help. We would like to thank EumedGrid Support that
allows us to run our scripts in their infrastructure.

REFERENCES

[1] T. W. Sederberg and S. R. Parry, “Free-form deformation of solid
geometric models,” ACM SIGGRAPH Computer Graphics, vol. 20,
no. 4, pp. 151-160, 1986.

[2] P. Ekman, W. V. Friesen, and J. C. Hager, Facial Action Coding System.
Consulting Psychologists Press, 1978.

[3] I. S. Pandzic and R. Forchheimer, MPEG-4 facial animation: the
standard, implementation and applications. John Wiley and Sons, 2002,
vol. 13, no. 5.

[4] A. Moreno and A. Sanchez, “Gavabdb: A 3d face database,” Proc 2nd
COST Workshop on Biometrics on the Internet Fundamentals Advances
and Applications, p. 7582, 2004.

[5] B. Fleming and D. Dobbs, Animating facial features and expressions,
ser. Charles River Media graphics. Charles River Media, 1999, vol. 1.

[6] I.-C.Lin, J.-S. Yeh, and M. Ouhyoung, “Extracting realistic 3d facial an-

imation parameters from multiview video clips,” IEEE Comput. Graph.

Appl., vol. 22, no. 6, pp. 72-80, November 2002.

A. Agathos, I. Pratikakis, S. Perantonis, N. Sapidis, and P. Azariadis,

“3d mesh segmentation methodologies for cad applications,” Computer

Aided Design And Applications, vol. 4, no. 6, pp. 827-841, 2007.

[8] A. Shamir, “A survey on mesh segmentation techniques,” Computer

Graphics Forum, vol. 27, no. 6, pp. 1539-1556, 2008.

A. Pichler, R. B. Fisher, and M. Vincze, “Decomposition of range images

using markov random fields,” Proceedings of International Conference

on Image Processing, pp. 1205-1208, 2004.

[10] 1. Ravyse and H. Sahli, “Facial analysis and synthesis scheme,” Ad-
vanced Concepts for Intelligent Vision Systems Proceedings, vol. 4179,
pp- 810-820, 2006.

[11] T. DOrazio, M. Leo, G. Cicirelli, and A. Distante, “An algorithm for real
time eye detection in face images,” Proceedings of the 17th International
Conference on Pattern Recognition 2004 ICPR 2004, pp. 278-281, 2004.

[12] A. Jacquin, A. Eleftheriadis, T. B. Laboratories, and M. Hill, “Automatic
location tracking of faces and facial features in video sequences,”
Computer, no. June, 1995.

[13] A. Yilmaz and M. Shah, “Automatic feature detection and pose recovery
for faces,” Proceedings of the Fifth Asian Conference on Computer
Vision, no. January, pp. 1-6, 2002.

[14] P. C. Yuen, S. Lao, and M. Kawade, “Robust facial feature point detec-
tion under nonlinear illuminations,” Proceedings IEEE ICCV Workshop
on Recognition Analysis and Tracking of Faces and Gestures in RealTime
Systems, pp. 168-174, 2001.

[15] L. Mu and Forchheimer, “Automatic extraction of human facial features,”
Signal Processing Image Communication, vol. 8, no. 4, pp. 309-326,
1996.

[16] K.-M. Lam and H. Yan, “An analytic-to-holistic approach for face
recognition based on a single frontal view,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 20, no. 7, pp. 673—686,
1998.

[17] C. Xu, T. Tan, Y. Wang, and L. Quan, “Combining local features for
robust nose location in 3d facial data,” Pattern Recognition Letters,
vol. 27, no. 13, pp. 1487-1494, 2006.

[18] S. Gupta, M. K. Markey, J. K. Aggarwal, and A. C. Bovik, “Three di-
mensional face recognition based on geodesic and euclidean distances,”
Proceedings of SPIE, vol. 6499, pp. 64 990D-64 990D-11, 2007.

[19] J. Dalong, L. Zhiguo, W. Zhaoqi, and G. Wen, Animating 3D Facial
Models with MPEG-4 FaceDefIubles. 1EEE Computer Society, 2002,
p. 395.

[20] A. Giuseppe, B. Roberto, K. Kostas, R. Federico, T. Federica, and
V. Kevin, “Grid infrastructures as catalysts for development on escience:
experiences in the mediterranean,” Bio-algorithms and Med-systems
Journal, pp. 23-25, 2007.

[21] T. M. Chan, More algorithms for all-pairs shortest paths in weighted
graphs. ACM Press, 2007, pp. 590-598.

[7

—

[9

—

